
From manual cloud
provisioning to one
click deployments
Patrick Schulz
Sr. Solutions Engineer
pschulz@hashicorp.com

Copyright © 2019 HashiCorp

About HashiCorp

Leading Cloud Infrastructure Automation

Founded

2012
Employees

650+
Funding

174M

Our software stack enables the provisioning, securing, connecting
and running of apps and the infrastructure to support them.

We unlock the cloud operating model for every business and
enable their digital transformation strategies to succeed.

The effects of digital transformation

Digital experiences are now the primary
interface between a customer and a
business, or business and business.

Experiences are typically device- and
cloud-first: rich, personal interface, with large

scale data processing and intelligence.

Cloud adoption is a secular trend

This patterns demands a change in the
model for software delivery to meet delivery

goals, and transformation objectives.

Digital transformation means pressure on application delivery

Copyright © 2019 HashiCorp ⁄

What are we trying to achieve?

Help you to achieve your business goals by implementing a common
workflow which allows for more agility through self-service.

Which means faster Time to Value while maintaining control over security,
governance & cost.

Provisioning
infrastructure today...

Todays ticket-based workflow

Azure Ticket Queue

Azure Ops Team

1. Request access to Azure

Self-service
2. Create VMs

3. Request DB

4. Request LB

5. Request Firewall rules

DB Ticket Queue

Cloud DBA

LB Ticket Queue

F5 Team
Sec Ticket Queue

Sec Ops Team

Cloud

Copyright © 2019 HashiCorp ⁄

Why you should stop doing it like you used
to do?

8

● Reduced productivity from
manual workflows using
Point-and-Click GUIs

● Increased cost with “cloud
waste” or over provisioning

● Increased risk with more
chances for human error and
best practices are followed on
a “best effort” basis using tribal
knowledge

Introducing
HashiCorp Terraform
Infrastructure as Code

Why Infrastructure as Code?
● Describe the desired state of your infrastructure in a declarative way
● Deploy infrastructure automated in a consistent and repeatable manner
● Consistent workflow across different platforms (APIs)
● Collaboration through version control system (Azure DevOps, GitHub,

GitLab, etc.)
● Instant documentation and tracking of changes (Versioning)

In essence: Don’t repeat yourself and spent your valuable time and the time
of others waiting for you, time manually by clicking through a UI.

IaC with Terraform
CODE EDITOR

provider "azurerm" {}

resource "azurerm_resource_group" "rg" {

 name = "test"

 # ...

}

resource "azurerm_network_interface" "main" {

 # ...

}

resource "azurerm_virtual_machine" "main" {

 name = "server"

 location = data.azurerm_resource_group.rg.location

 resource_group_name = data.azurerm_resource_group.rg.name

 vm_size = "Standard_D2s_v3"

 network_interface_ids = [azurerm_network_interface.main.id]

Terraform
Providers

Providers, extensible to any cloud or
service with an API, enable Terraform to
provision diverse services without
abstracting functionality.

▪ 200+ Providers and Services

Terraform
Dependencies / Resource Graph

Terraform builds a graph of all your resources, and parallelizes
the creation and modification of any non-dependent resources.
Because of this, Terraform builds infrastructure as efficiently as
possible, and operators get insight into dependencies in their
infrastructure.

Azure
Provider

azure_vm.test.1

azure_dns_record.w

azurerm_lb.w azurerm_public_ip.main

azure_vm.test

azure_vm.test.2 azure_vm.test.3

Graph only for illustration purposes.

Terraform
Modules

A module is a container for multiple resources that are
used together. Modules can be used to create
lightweight abstractions, so that you can describe your
infrastructure in terms of its architecture, rather than
directly in terms of physical objects.

Terraform
Plan

Terraform has a "planning" step where it
generates an execution plan. The
execution plan shows what Terraform will
do when you call apply. This lets you avoid
any surprises when Terraform
manipulates infrastructure.

TERMINAL

 An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:

 + create

-/+ destroy and then create replacement

Terraform will perform the following actions:

 # aws_internet_gateway.default will be created

 + resource "aws_internet_gateway" "default" {

 + id = (known after apply)

 + owner_id = (known after apply)

 + tags = {

 + "Name" = "pschulz-DEV"

 + "TTL" = "48"

 + "env" = "DEV"

 + "environment" = "aws-tfe-repo-demo"

 + "owner" = "pschulz"

Terraform
State

Terraform caches information about your managed
infrastructure and configuration. This state is used to
persistently map the same real world resources to your
configuration from run-to-run, keep track of metadata,
and improve performance for large infrastructures.

Copyright © 2019 HashiCorp ⁄

Terraform
State

The state become a crucial part of your Terraform
deployment process, as it will contain sensitive
information eventually, which need to be protected.

Cloud Provisioning with Terraform OSS
A common Cloud Operating Model

Developer or
CI / CD System

TF CLI

TF Template

State File

Infrastructure diagram

Azure Cloud

Resource Group

Virtual
Machine

Virtual
Machine

LB

vnet

Lets we need a couple of new resources:

● New Azure Subscription
● Resource Group
● Subnet
● Virtual Machines
● Load Balancer

Demo

What's the Problem with OSS?
Open source doesn't scale very well, for multiple reasons:

● Potential secret sprawl and exposure through VCS.
● Missing control over security, governance & cost.
● State Management (Storage, Locking, Protection/RBAC).

○ Required infrastructure needs to be provisioned and secured,
like object storage, service accounts.

○ Imagine managing all the accounts or having the risk
of all users/pipelines being able to access a single object store.

● No API - Limited to CLI workflow.
● No integration into tools like ServiceNow.

state file

Introduction to TFE
● Central platform (running on-prem. or in the Cloud).
● Provides common workflows for use across teams: VCS/API/CLI/UI.
● Allows to establish a so called producer/consumer model.
● Adds an API, RBAC, State Management, VCS connection, Variable Store, Private Module Registry, Cost

Estimation.

● Allows to enforce Sentinel policies across workspaces.

Workspaces
● Organize and decompose monolithic

infrastructure into
micro-infrastructures.

● Match the organization of your
application or teams with your
infrastructure.

● “Micro-infrastructures” are linked to
create the complete infrastructure for
the application.

VCS Structures
Workspace

Prod
Workspace

Stage
Workspace

Dev

Master

Branch
Dev

Branch
Stage

Branch
Prod

Workspace
Prod

Workspace
Stage

Workspace
Dev

Pull RequestPull RequestWorkspace
Dev Master

Working
Dir. Dev

GitOps
● Teams might operate in the

producer/consumer model through
separated workspaces.

● When teams access remote states,
they can issue pull requests to the
backing repository, in order to
change the underlying infrastructure
if new requirements arise.

● Teams in charge of the infrastructure
can review and approve or deny
changes.

Workspace
Net Prod

Workspace
Net Stage

Workspace
Net Dev

App A
 Prod

App A
Stage

App A
Dev

Remote State

Net
Repo

Pull Request

Dev App A new
vnet

Cloud Provisioning with Terraform Ent.
A common Cloud Operating Model

Codified policies enforce security, compliance, and
operational best practices across all cloud provisioning

Developer or
CI / CD System

TF CLI

TF Template

Developer or
CI / CD System

TF CLI

TF Template

TFE
■ Governance
■ Private

Modules
■ State Mgmt.
■ RBAC
■ Variable

Store
■ API
■ VCS

Connection

Sate File

Demo

Copyright © 2019 HashiCorp ⁄

Terraform and ServiceNow

Terraform Self-Service Workflow

Self-service

1. SS through SNOW, TFE,
Pipeline, etc.

2. Receive TFE Workspace
a) Add cloud secrets or

leverage Vault

3. Bring Your Own Code
a) Leverage private modules

4. Deploy what you need

Terraform
Workspace

SNOW

Cloud

Terraform
Workspace

Sentinel

Terraform and Vault

Improved Time-To-Value

Established a central service and
common workflow

Maintained control over security,
governance & cost.

Summary

Thank You
pschulz@hashicorp.com

www.hashicorp.com

32

mailto:pschulz@hashicorp.com

